В течение жизни светящейся огненной звезды происходит бескомпромиссная борьба между противоборствующими силами. Кульминация — это высвобождение колоссального количества энергии.
Как устроены звезды: рождение, жизнь и смерть звезд
Ночь темная, ясная, без луны. Вы смотрите на небо. Вы видите тысячи звезд, расположенных в виде созвездий. Свет от этих звезд преодолел огромные расстояния, чтобы достичь Земли. Но что такое звезды? Как далеко они находятся? Все ли они одинаковы? Есть ли вокруг них другие планеты? В этой статье мы рассмотрим увлекательный мир звезд. Мы рассмотрим природу звезд, их типы, образование и смерть.
Звезды — это огромные светящиеся шары из горячих газов, в основном водорода и гелия. Некоторые звезды расположены относительно близко (30 ближайших звезд находятся на расстоянии 40 парсек друг от друга), а другие — очень, очень далеко. Астрономы могут измерить расстояние с помощью метода, называемого параллакс, который измеряет изменение положения звезды на небе в разное время года.
Некоторые звезды одиноко стоят на небе, у других есть спутники (двойные звезды), третьи входят в состав крупных звездных скоплений с тысячами или миллионами звезд.
Не все звезды одинаковы. Они бывают разных размеров, яркости, температуры и цвета. Они обладают многими свойствами, которые можно измерить, изучая излучаемый ими свет:
-
- Температура
- спектр или длина волны излучаемого ими света
- Яркость
- Яркость
- размер (радиус)
- масса
- Движение (к нам или от нас, скорость вращения).
Туманность Пламя и туманность Конская голова в Поясе Ориона.
И если вы изучаете звезды, вы захотите добавить эти термины в свой звездный словарь:
-
- абсолютная величина — видимый размер звезды, когда она находится на расстоянии 10 парсек от Земли.
- Светимость — яркость звезды, видимая с Земли, — это общее количество энергии, излучаемой звездой в секунду.
- Парсек — мера расстояния (3,3 световых года, 33 триллиона километров) Световой год — мера расстояния (10 триллионов километров)
- Спектр — свет различных длин волн, излучаемый звездой.
- Масса Солнца — масса Солнца; 1,99 x 10 30 кг (330 000 масс Земли)
- Солнечный радиус — радиус Солнца; 418 000 миль (696 000 км).
Температура и спектр
Некоторые звезды очень горячие, другие — менее. Это можно определить по цвету излучаемого ими света. Если вы посмотрите на угли на угольном гриле, то заметите, что раскаленные угли холоднее белых. То же самое относится и к звездам. Голубая или белая звезда горячее желтой звезды, которая, в свою очередь, горячее красной звезды. Таким образом, если вы посмотрите на самый сильный цвет или длину волны света, излучаемого звездой, вы можете рассчитать ее температуру (температура в градусах Кельвина = 3 x 10 6 / длина волны в нанометрах).
Спектр звезды может также рассказать о содержащихся в ней химических элементах, поскольку различные элементы (например, водород, гелий, углерод, кальций) поглощают свет на разных длинах волн.
Яркость, светимость и радиус
Если вы посмотрите на ночное небо, то увидите, что некоторые звезды ярче других, как показано на этой фотографии Ориона.
Яркость звезды определяется двумя факторами:
-
- Светимость — сколько энергии он излучает в любой момент времени
- Расстояние — как далеко от нас находится объект
Прожектор излучает больше света, чем фонарь. То есть, фара светит ярче. Однако, когда фара находится на расстоянии 8 километров, она уже не такая яркая, потому что интенсивность света уменьшается с квадратом расстояния. Фара на расстоянии 8 км может казаться такой же яркой, как фонарь на расстоянии 15 см. То же самое относится и к звездам.
Астрономы (профессионалы или любители) могут измерить яркость звезды (количество света, которое она излучает) с помощью фотометра или прибора с зарядовой связью (ПЗС) на конце телескопа. Если они знают яркость звезды и расстояние до звезды, они могут вычислить яркость звезды:
Светимость = Светимость x 12,57 x (расстояние)².
Светимость также связана с размером звезды. Чем больше звезда, тем больше энергии она излучает и тем ярче она светит. Это можно увидеть на примере угольного гриля. Три брикета раскаленного древесного угля производят больше энергии, чем один брикет раскаленного древесного угля при той же температуре. Аналогично, если две звезды имеют одинаковую температуру, но разные размеры, то большая звезда ярче меньшей: Большая звезда ярче меньшей.
Однако если красный гигант имеет массу более 30 масс Солнца (или если он уже является сверхгигантом), а масса его ядра превышает предел Оппенгеймера-Волкова, составляющий примерно 2,5-3 массы Солнца, то ни белый карлик, ни нейтронная звезда не образуются.
Признаки скорой смерти звезды
Каждая звезда во Вселенной — это гигантский ядерный реактор для преобразования одного элемента в другой. Мечта древних алхимиков, своего рода философский камень. В начале своей жизни звезды вырабатывают энергию путем преобразования двух атомов водорода в гелий, выделяя при этом огромное количество энергии.
Слияние в звездах
Когда водород израсходован, звезды начинают производить углерод, затем кислород и так далее, пока не образуется железо.
Производство железа является признаком того, что смерть приближается к звезде очень близко. Нет ничего тяжелее железа, что могла бы произвести звезда. Железо поглощает всю энергию ядерного синтеза звезды. Он просто сжигает свое топливо и неизбежно приближается к своей гибели. Поэтому такая звезда, как Солнце (звезда среднего размера), больше не может удерживать свои внешние слои вместе, и они начинают отслаиваться, удаляясь от ядра, раздувая Солнце все больше и больше и превращаясь в красного гиганта.
Финальные стадии звёздной эволюции
Жизненный цикл звезд зависит от их массы. Более крупные звезды сжигают свое топливо более интенсивно и сгорают за десятки миллионов лет. Более мелкие звезды могут тлеть сотни миллиардов лет. Поэтому в зависимости от массы звезды происходит процесс ее гибели. На следующем рисунке показаны примеры эволюции звезд разной массы.
Давайте более подробно рассмотрим загадочные процессы в конце жизненного цикла различных звезд.
Сверхмассивные звёзды
После того как звезда с массой более пяти солнечных масс переходит в стадию красного сверхгиганта, ее ядро начинает сжиматься под действием гравитации. По мере его сжатия температура и плотность увеличиваются, и начинается новая последовательность термоядерных реакций.
В результате крупные и более массивные звезды быстро сгорают и взрываются в виде сверхновых.
Взрыв сверхновой звезды
При этом ослепительном взрыве сверхновой звезды выделяется в 100 раз больше энергии, чем Солнце выделяет за всю свою жизнь. Взрыв сверхновой оставляет после себя нейтронную звезду или черную дыру, окруженную веществом, выброшенным огромной энергией взрыва, которое затем образует материал для новых звезд.
Бетельгейзе, например, может встретить такую судьбу, как одна из наших ближайших звездных соседок, но невозможно рассчитать, когда она взорвется.
Процессы, участвующие в образовании сверхновой, все еще изучаются и пока не ясны. Также сомнительно, что от первоначальной звезды осталось что-то целое.
Бетельгейзе вот-вот взорвется
В настоящее время существует четыре варианта сверхмассивной звезды:
- Сверхновые малой массы производят нейтронную звезду и газ.
- Сверхновые с большей массой рождают черную дыру и газ.
- Массивные звезды, которые коллапсируют напрямую, образуют массивную черную дыру без каких-либо других остатков.
- После взрыва сверхновой звезды остается только газ.
Однако чаще всего рассматриваются два варианта: Нейтронные звезды и черные дыры.
Нейтронные звезды
Дальше гравитация продолжает сжимать то, что осталось, но на определенном этапе ядерные силы останавливают сжатие, и образуется нейтронная звезда — пульсар.
Нейтронная звезда — это ужасающее физическое явление. Ядро взорвавшейся звезды сжимается — подобно газу в двигателе внутреннего сгорания, только очень масштабно и эффективно: сфера диаметром в сто тысяч километров превращается в сферу диаметром от 10 до 20 километров. Сила сжатия настолько велика, что электроны падают на атомные ядра и образуют нейтроны — отсюда и название. Его поверхность характеризуется сверхсильными магнитными полями и сверхсильной гравитацией.
Что останется вместо холодной нейтронной звезды, сказать трудно, а наблюдать невозможно: Мир слишком молод для этого: мир слишком молод для этого.
Черные дыры
Звезды просто так не исчезают…
В результате гибели звезд образуются строительные блоки для Вселенной. Все химические элементы — золото, серебро, платина, железо и другие — образуются в умирающих звездах, которые взрываются в космосе.
Первые звезды были массивными (в несколько тысяч раз больше Солнца) и нестабильными. Они рождались и быстро умирали, оставляя после себя космическую пыль, богатую различными химическими веществами. Они образовались из космических туманностей благодаря энергии Большого взрыва.
В настоящем, как и на более поздних этапах, звезды будут продолжать рождаться. Но они запускаются взрывом другой сверхновой. Ударная волна стимулирует взаимодействие частиц космической пыли, так что они перемещаются и слипаются, притягиваясь друг к другу и увеличивая свои размеры.
Молодая звезда и окружающее ее пространство изначально представляют собой неуправляемую стихию с большим количеством хаотично вращающихся малых планет. Некоторые из них сталкиваются друг с другом, другие растут и поглощают останки первых.
Например, Меркурий в результате таких столкновений лишился своей верхней коры, оставив только ядро.
После 500 миллионов лет количество планет уменьшается, а их размер увеличивается.
Солнце — одна из самых маленьких звезд. Его разрушение через 5-6 миллиардов лет будет происходить по первому сценарию. В настоящее время 80% звезд во Вселенной не больше Солнца.
Процессы, участвующие в образовании сверхновой, все еще изучаются и пока не ясны. Также сомнительно, что от первоначальной звезды осталось что-то целое.
Нейтронная звезда
Здесь мы будем говорить о белых карликах. Но давайте сначала представим, что первоначальная звезда была тяжелой и эволюционировала немного дальше. В этом случае давления электронного газа будет недостаточно, чтобы остановить его коллапс, поэтому он будет продолжать коллапсировать, как и начал. И она сожмется до размера 11 км (для сравнения: белые карлики обычно размером с Землю, то есть в 1000 раз больше). В то же время его масса будет соответствовать массе гигантской звезды с массой нескольких наших солнц.
Этот объект оказывается настолько плотным, что его материя состоит из нейтронов. Поэтому ее также называют нейтронной звездой. Это происходит потому, что, грубо говоря, электроны сжимаются в протоны, а нейтроны создаются. Здесь также вступает в силу эффект, что нейтроны являются фермионами, которые не хотят приближаться дальше и предотвращают дальнейший коллапс.
В этом случае плотность в центре нейтронной звезды выше, чем в ядре обычного атома. Материя там находится в состоянии, в котором она производит частицы, которые были созданы только на ранних стадиях развития Вселенной. И мы даже не можем описать ядра нейтронных звезд, потому что наши расчеты дают только бесконечности и нули по отношению к ним.
Нейтронные звезды интересны тем, что они могут иметь невероятно сильные магнитные поля. Поэтому белые карлики и нейтронные звезды являются для физиков и астрофизиков бесплатными космическими лабораториями для изучения условий, которые невозможны на Земле. Грубо говоря, на Земле мы можем создать поле в 10 4 Гс, но магнетары — это нейтронные звезды с очень большим полем в 10 16 Гс. А нейтронные звезды, условно говоря, представляют собой огромный сверхплотный, сверхпроводящий, сверхтекучий, вращающийся «кристалл» с огромным магнитным полем. И с помощью некоторых косвенных параметров мы можем изучить, как ведут себя там частицы. В астрофизике вы никогда не можете ничего потрогать, и вам приходится пытаться понять, как то или иное явление вызывает наблюдаемые эффекты, которые можно увидеть с Земли.
Если белые карлики еще можно описать с помощью ньютоновской физики, то для описания нейтронных звезд уже приходится использовать общую теорию относительности, разработанную Эйнштейном. Это связано с таким параметром, как гравитационный радиус, т.е. радиус, который будет иметь объект, если он превратится в черную дыру. Для Солнца, например, гравитационный радиус составляет несколько метров, а поскольку размер Солнца намного больше этого радиуса, для него можно использовать обычную ньютоновскую физику. Для нейтронной звезды, например, гравитационный радиус составляет 4 километра, а ее радиус — 11 километров, и здесь мы не можем использовать обычную физику.
Чёрная дыра
Если исходная звезда была очень тяжелой и цикл термоядерного синтеза достиг железа, ничто не может остановить процесс коллапса и образуется черная дыра. А черные дыры — это очень странные объекты, о которых мы знаем очень мало, потому что вся их физическая сущность скрыта от нас гравитационным лучом, из которого не может выйти никакая информация, потому что даже свет не может выйти из него. Мы видим их лишь косвенно: например, по тому, как они искажают движение окружающих объектов.
Все черные дыры обычно делятся на две категории: Черные дыры со звездной массой и сверхмассивные черные дыры, масса которых составляет сотни или тысячи солнечных масс. Сверхмассивные черные дыры образуются в ядрах галактик, и мы пока не знаем, как это происходит. Раньше их называли квазарами и считали активным ядром галактики, но затем было обнаружено, что это гигантская черная дыра, которая расщепляет звезды и образует вокруг себя аккреционный диск, излучающий рентгеновские лучи. Поскольку свет не уходит от таких объектов, кажется, что звезды движутся в пустом пространстве.
Проблема в том, что черные дыры являются для нас математически сложными объектами, поскольку понятие черной дыры ассоциируется с сингулярностью, делением на ноль и бесконечностью. Поэтому, в целом, мы пока не знаем, как с ними работать. Математически получается, что материя за пределами гравитационного луча, за горизонтом событий, из которого свет не выходит, просто сжалась до точки.
REDPIXEL.PL ./ bigstock.com
Технически, черные дыры способны испаряться. После Большого взрыва сначала образовались первобытные черные дыры, которые были очень маленькими. В них работал так называемый механизм Хокинга, согласно которому частицы и античастицы могут создаваться на границах гравитационного поля черной дыры, за пределами горизонта событий. Это те, кто может покинуть гравитационное поле. Это называется вакуумной турбулентностью: обычно вакуум не является вакуумом — в нем постоянно рождаются и умирают частицы, и это ничему не противоречит.
Но когда частица рождается в вакууме, она получает энергию от самого вакуума. Когда частицы рождаются в гравитационном поле, энергия гравитационного поля расходуется. Согласно аксиоме Эйнштейна о том, что масса и энергия эквивалентны, расходуемая энергия гравитационного поля приводит к расходуемой массе черной дыры. Первоначальные черные дыры были очень легкими и очень быстро теряли массу, поэтому предполагается, что все они испарились. А большие черные дыры испаряются очень медленно, поэтому для них этот механизм в принципе неверен. Но проблема в том, что мы не можем измерить их все.
Звезды со средней массой от половины солнечной массы до десяти солнечных масс способны после сгорания водорода в центре сжигать более тяжелые химические элементы в своем составе — сначала гелий, затем углерод, затем кислород, а затем, по совпадению, вплоть до железа-56 (изотоп железа, который иногда называют «термоядерным пеплом»).
Смерть сверхгигантов
Остаток сверхновой W49B.
Сверхновые — это звезды с массой более 8-10 солнечных масс. В ядрах этих звезд после истощения водорода происходят термоядерные реакции с образованием гелия. После израсходования гелия ядро продолжает синтезировать все более тяжелые элементы. В ядре звезды образуются все новые и новые слои, каждый из которых имеет свой собственный тип термоядерного синтеза. На последней стадии своей эволюции такая звезда становится «слоистым» сверхгигантом. Железо плавится в его ядре, а ближе к поверхности продолжается синтез гелия из водорода.
Слияние ядер железа и более тяжелых элементов происходит за счет поглощения энергии. Поэтому ядро сверхгиганта, превратившееся в железо, больше не может выделять энергию для уравновешивания гравитационных сил. Ядро теряет свое гидродинамическое равновесие и беспорядочно разрушается. Остальные слои звезды поддерживают это равновесие до тех пор, пока ядро не сократится до критического размера. Теперь другие слои и звезда в целом теряют свое гидродинамическое равновесие. Только в этом случае «побеждает» не сжатие, а энергия, которая высвобождается при коллапсе и дальнейших хаотических реакциях. Внешняя оболочка выбрасывается, и происходит взрыв сверхновой.
Классовые различия
Кассиопея Остаток сверхновой звезды
Различные классы и подклассы сверхновых можно объяснить тем, какой была звезда до взрыва. Например, отсутствие водорода в сверхновых класса I (подклассы Ib, Ic) является следствием того, что в самой звезде не было водорода. Вероятно, часть его внешней оболочки была потеряна во время эволюции в тесную бинарную систему. Спектр подкласса Ic отличается от спектра подкласса Ib отсутствием гелия.
В любом случае, сверхновые этой категории возникают в звездах без внешней водородно-гелиевой оболочки. Остальные слои держатся в довольно узких рамках по размеру и массе. Это связано с тем, что термоядерные реакции чередуются с наступлением определенной критической стадии. Вот почему взрывы звезд класса Ic и Ib так похожи. Их максимальная светимость примерно в 1,5 миллиарда раз превышает светимость Солнца. Они достигают такой яркости за 2-3 дня. После этого их яркость становится в 5-7 раз тусклее в течение месяца и медленно уменьшается в последующие месяцы.
Сверхновые типа II имели водородно-гелиевую оболочку. В зависимости от массы звезды и других особенностей, эта оболочка может иметь различные пределы. Это объясняет широкий диапазон характера сверхновых. Их светимость может составлять от нескольких миллионов до нескольких миллиардов солнечных светимостей (исключая гамма-всплески, см. ниже), а динамика светимости сильно варьируется.
Трансформация белого карлика
Сверхновые типа Ia
Особый класс сверхновых — это сверхновые класса Ia. Это единственный класс сверхновых, которые могут возникать в эллиптических галактиках. Эта особенность позволяет предположить, что эти взрывы не являются результатом смерти сверхгиганта. Супергиганты не живут достаточно долго, чтобы их галактики «состарились», т.е. стали эллиптическими. Более того, все вспышки в этой категории имеют практически одинаковую яркость. По этой причине сверхновые типа Ia являются «стандартными свечами» Вселенной.
Они появляются совершенно по-разному. Как упоминалось ранее, эти вспышки в чем-то похожи на новые вспышки. Схема их образования предполагает, что они также происходят из близлежащей системы, состоящей из белого карлика и его компаньона. Однако, в отличие от новых звезд, происходит другой, более разрушительный вид взрыва.
По мере того как он «пожирает» своего компаньона, масса белого карлика растет, пока не достигнет предела Чандрасекара. Этот предел, около 1,38 солнечных масс, является верхним пределом массы белого карлика, после которого он становится нейтронной звездой. Такое событие приводит к термоядерному взрыву с мощным выделением энергии, на несколько порядков превышающим обычный взрыв с новым пламенем. Почти неизменное значение предела Чандрасекара объясняет небольшие различия в яркости между разными вспышками этого подкласса. Эта светимость почти в 6 миллиардов раз больше, чем у Солнца, и динамика ее изменения такая же, как у сверхновых класса Ib, Ic.