Пламенные ракетные двигатели выводят космический корабль на орбиту вокруг Земли. Другие ракеты выводят корабли за пределы Солнечной системы.
Чем кормить ракету?
Галактические путешествия, станции на орбите. Мечта о космических путешествиях не осуществилась бы, если бы человечество не изобрело ракетное топливо. Кстати, что именно является топливом для космических аппаратов? Может ли ракета работать на автомобильном топливе и какой двигатель является самым мощным? Вот как нужно заправлять ракету.
Большинство двигателей, которые выводят ракеты в космос, — это реактивные двигатели. Это означает, что, в отличие от автомобильных двигателей, они не вращаются, а получают энергию другим способом.
Топливо сжигается в камерах ракетных двигателей. Образовавшийся газ выбрасывается под высоким давлением в одном направлении, а ракета летит в другом направлении с определенным ускорением. Это соответствует третьему закону Ньютона — действие равно реакции. Сила ракетного двигателя, т.е. скорость, с которой выбрасываются газы, называется «тягой». В метрической системе он измеряется в ньютонах, но в США он измеряется в «фунтах тяги». Один фунт тяги эквивалентен 4,45 ньютонам.
Различают твердое и жидкое топливо. Их топливо всегда содержит окислитель для воспламенения и ракетное топливо, из которого получается рабочий газ, создающий тягу.
Твердая мощь для ракеты
Твердое топливо — это смесь веществ, которые могут гореть без доступа кислорода. Их можно разделить на два типа: бинарные (также называемые гомогенными) и смешанные. Первый тип — это твердый раствор. Обычно нитроцеллюлоза в нитроглицерине. В прошлом смешанные твердые ракетные топлива содержали порох, но сегодня они содержат перхлорат аммония, мелкозернистый сферический порошок алюминия или магния и органический полимер.
ЛИКБЕЗ
Твердотопливный двигатель или РДТ (твердотопливный ракетный двигатель) также называют твердотопливным двигателем (ТТД), а жидкотопливный двигатель — жидкостным ракетным двигателем (ЖРД).
Андрей Рюрикович, выдающийся испытатель космической техники:
— Твердотопливный ракетный двигатель легче построить и обслуживать. По сути, это просто бочка с отверстием. Двигатель на жидком топливе представляет собой солянку из трубопроводов и различных агрегатов, поэтому его надежность ниже. В то же время жидкотопливный двигатель имеет большую тягу и более управляем: его легче включать и выключать и регулировать тягу. Жидкостный двигатель, работающий на криогенном топливе, имеет одну особенность — более сложный процесс заправки перед запуском (ракета Falcon 9 Илона Маска взорвалась именно в процессе заправки). Вы включаете РДТ и все: вы не можете выключить его, пока он не перегорит.
Однажды с американским шаттлом произошла такая ситуация: во время запуска отказал один из трех жидкостных двигателей. Аварийный двигатель и два других двигателя на жидком топливе могут быть отключены до запуска TTU. Если бы авария продолжалась всего на несколько секунд дольше и ТТУ было бы активировано, разрушение и смерть экипажа были бы неминуемы.
Твердотопливные двигатели проще в обслуживании. Они просто есть. Все, что вам нужно делать, это регулярно проверять температуру и влажность в хранилище. Однако если заряд оставить слишком надолго, он «высохнет» и появятся трещины, которые при воспламенении резко увеличат площадь сгорания топлива и, следовательно, давление в камере сгорания. Тогда ТТУ становится непредсказуемой миной: Либо он работает правильно, либо взрывает себя и все вокруг.
Гибкое управление
Жидкое топливо состоит из топлива и окислителя, но они подаются в камеру сгорания отдельно и смешиваются позже. Жидкое топливо — это одно- или двухкомпонентное топливо. Однокомпонентное топливо (обычно нитрометан) распадается на окислитель (кислород) и ракетное топливо. В случае двухкомпонентных топлив окислитель добавляется в топливо отдельно.
Подходящими окислителями для жидких ракетных топлив являются жидкий кислород, перекись водорода, азотная кислота с 15-20% оксидов азота, тетрагидроксид селитры, тетранитрометан, фтор и их смеси с жидким кислородом. В качестве жидкого топлива используются парафин, водород, гидразин (азотно-водородное соединение N2H4), бензин, парафины и ароматические соединения, угарный газ, циклогексан и циклопропан, этилен, пропилен или оксид этилена, ацетилен с водородом.
Возможные комбинации топлива и окислителя:
Жидкий водород и кислород для космических челноков. Ракеты Годдарда использовали бензин и жидкий кислород. Парафин и жидкий кислород использовались для первой ступени Saturn 5 в программе Apollo. Спирт и жидкий кислород в немецких ракетах V2, известных как V-2, первых в мире баллистических ракетах. Закись азота и монометилгидразин использовались в двигателях космического аппарата «Кассини».
Галактические путешествия, станции на орбите. Мечта о космических путешествиях не осуществилась бы, если бы человечество не изобрело ракетное топливо. Кстати, что именно является топливом для космических аппаратов? Может ли ракета работать на автомобильном топливе и какой двигатель является самым мощным? Вот как нужно заправлять ракету.
Ракета
Сегодня под ракетой понимают летательный аппарат, который перемещается в пространстве с помощью реактивных двигателей. Полет ракеты не обязательно требует наличия воздушной или газовой среды, поэтому он возможен не только в атмосфере, но и в вакууме. Ракетные технологии позволили человечеству покинуть атмосферу Земли и освоить космос.
Как работает ракета?
Сегодня почти все ракеты являются многоступенчатыми. Конструктивно каждая ступень представляет собой отдельную ракету с собственными двигателями и запасом топлива. Первая ступень уводит ракету от Земли. Как только топливо в баках заканчивается, его сбрасывают, и, поскольку вес ракеты после выхода из первой ступени уменьшается, она продолжает свой полет на ускоренной скорости. Вводятся в действие двигатели второй ступени.
Этот процесс повторяется столько раз, сколько ступеней имеет ракета. Последняя ступень доставляет космический корабль к месту назначения. Поскольку в космосе нет твердого, жидкого или газообразного носителя, только сила реакции двигателя может ускорить ракету. В камере сгорания ракетное топливо смешивается и сгорает. В результате образуются газы, которые выбрасываются с большой скоростью через сопло. В то же время ракета ускоряется назад в соответствии с законом сохранения импульса.
Топливо ракеты, пропеллент (например, жидкий водород) и окислитель (жидкий кислород), находятся в отдельных баках.
Грузоподъемность ракет-носителей
С каждым новым поколением ракет увеличивается их грузоподъемность. Например, советская межконтинентальная баллистическая ракета Р7 в 1957 году вывела на орбиту первый в мире искусственный спутник весом 84 кг.
Советская ракета «Энергия» — одна из самых мощных ракет в мире. Он использовался для запуска многоразового 105-тонного орбитального корабля «Буран».
Большинство двигателей, которые выводят ракеты в космос, — это реактивные двигатели. Это означает, что, в отличие от автомобильных двигателей, они не вращаются, а получают энергию другим способом.
Движение ракеты и законы Ньютона
Второй закон движения Ньютона связывает силу, действующую на движущийся объект, с его массой и ускорением (изменением скорости в единицу времени). Таким образом, чтобы создать мощную ракету, ее двигатель должен выбрасывать большое количество топлива на высокой скорости. Третий закон движения Ньютона гласит, что сила действия равна силе противодействия и направлена в противоположную сторону. В ракете раскаленные газы, выбрасываемые из сопла ракеты, являются движущей силой; сила сопротивления движет ракету вперед.
Газовая пропульсия
Ракеты, выводящие на орбиту космические аппараты, используют раскаленные газы в качестве источника энергии. Но в роли газов может выступать что угодно — от твердых частиц, выбрасываемых из хвоста в космос, до элементарных частиц, таких как протоны, электроны и фотоны.
За счет чего летит ракета?
Многие считают, что ракета движется, потому что газы, выбрасываемые из сопла, отталкиваются от воздуха. Но это не так. Именно сила, выталкивающая газ из сопла, толкает ракету в космос. На самом деле, ракете легче лететь в свободном пространстве, где нет воздуха и ничто не препятствует полету частиц газа, выбрасываемых ракетой, и чем быстрее движутся эти частицы, тем быстрее летит ракета.
То есть, между космическим кораблем и воздухом нет трения, замедляющего полет. Трения нет, потому что в открытом пространстве нет воздуха. Кроме того, космический корабль становится почти невесомым, когда удаляется от Земли. Поэтому даже слабый взрыв двигателя может легко столкнуть с пути очень большой корабль.
Система наведения ракеты состоит из сложных радаров, датчиков, коммуникационного оборудования и бортовых вычислительных блоков. Он имеет две основные функции:
Действие трех скоростей
Однозначного ответа на вопрос, с какой скоростью летит ракета, не существует. Однако все летающие аппараты пытаются соответствовать скорости космоса — первый (7,9 км/с), второй (11,2 км/с) и третий (46,9 км/с) соответственно. Первый позволяет «не упасть» и выйти на орбиту, второй — покинуть орбиту Земли, а третий — преодолеть гравитацию. Чем дальше объект, с которого запускается ракета, находится от звезды, тем меньше третья космическая скорость. Американский космический зонд «Вояджер-1», например, движется со скоростью 17 км/с.
Существует также четвертая космическая скорость. Это необходимо для того, чтобы объект преодолел гравитационное притяжение Млечного Пути и попал в межгалактическое пространство. Вблизи Солнца, например, четвертая космическая скорость составляет 550 км/с.